# 二进制位运算符
# 一、概述
二进制位运算符用于直接对二进制位进行计算,一共有7个。
- 二进制或运算符(or):符号为
|
,表示若两个二进制位都为0
,则结果为0
,否则为1
。 - 二进制与运算符(and):符号为
&
,表示若两个二进制位都为1,则结果为1,否则为0。 - 二进制否运算符(not):符号为
~
,表示对一个二进制位取反。 - 异或运算符(xor):符号为
^
,表示若两个二进制位不相同,则结果为1,否则为0。 - 左移运算符(left shift):符号为
<<
,详见下文解释。 - 右移运算符(right shift):符号为
>>
,详见下文解释。 - 头部补零的右移运算符(zero filled right shift):符号为
>>>
,详见下文解释。
这些位运算符直接处理每一个比特位(bit),所以是非常底层的运算,好处是速度极快,缺点是很不直观,许多场合不能使用它们,否则会使代码难以理解和查错。
有一点需要特别注意,位运算符只对整数起作用,如果一个运算子不是整数,会自动转为整数后再执行。另外,虽然在 JavaScript 内部,数值都是以64位浮点数的形式储存,但是做位运算的时候,是以32位带符号的整数进行运算的,并且返回值也是一个32位带符号的整数。
i = i | 0;
上面这行代码的意思,就是将i
(不管是整数或小数)转为32位整数。
利用这个特性,可以写出一个函数,将任意数值转为32位整数。
function toInt32(x) {
return x | 0;
}
2
3
上面这个函数将任意值与0
进行一次或运算,这个位运算会自动将一个值转为32位整数。下面是这个函数的用法。
toInt32(1.001) // 1
toInt32(1.999) // 1
toInt32(1) // 1
toInt32(-1) // -1
toInt32(Math.pow(2, 32) + 1) // 1
toInt32(Math.pow(2, 32) - 1) // -1
2
3
4
5
6
上面代码中,toInt32
可以将小数转为整数。对于一般的整数,返回值不会有任何变化。对于大于或等于2的32次方的整数,大于32位的数位都会被舍去。
# 二、二进制或运算符
二进制或运算符(|
)逐位比较两个运算子,两个二进制位之中只要有一个为1
,就返回1
,否则返回0
。
0 | 3 // 3
上面代码中,0
和3
的二进制形式分别是00
和11
,所以进行二进制或运算会得到11
(即3
)。
位运算只对整数有效,遇到小数时,会将小数部分舍去,只保留整数部分。所以,将一个小数与0
进行二进制或运算,等同于对该数去除小数部分,即取整数位。
2.9 | 0 // 2
-2.9 | 0 // -2
2
需要注意的是,这种取整方法不适用超过32位整数最大值2147483647
的数。
2147483649.4 | 0;
// -2147483647
2
# 三、二进制与运算符
二进制与运算符(&
)的规则是逐位比较两个运算子,两个二进制位之中只要有一个位为0
,就返回0
,否则返回1
。
0 & 3 // 0
上面代码中,0(二进制00
)和3(二进制11
)进行二进制与运算会得到00
(即0
)。
# 四、二进制否运算符
二进制否运算符(~
)将每个二进制位都变为相反值(0
变为1
,1
变为0
)。它的返回结果有时比较难理解,因为涉及到计算机内部的数值表示机制。
~ 3 // -4
上面表达式对3
进行二进制否运算,得到-4
。之所以会有这样的结果,是因为位运算时,JavaScript 内部将所有的运算子都转为32位的二进制整数再进行运算。
3
的32位整数形式是00000000000000000000000000000011
,二进制否运算以后得到11111111111111111111111111111100
。由于第一位(符号位)是1,所以这个数是一个负数。JavaScript 内部采用补码形式表示负数,即需要将这个数减去1,再取一次反,然后加上负号,才能得到这个负数对应的10进制值。这个数减去1等于11111111111111111111111111111011
,再取一次反得到00000000000000000000000000000100
,再加上负号就是-4
。考虑到这样的过程比较麻烦,可以简单记忆成,一个数与自身的取反值相加,等于-1。
~ -3 // 2
上面表达式可以这样算,-3
的取反值等于-1
减去-3
,结果为2
。
对一个整数连续两次二进制否运算,得到它自身。
~~3 // 3
所有的位运算都只对整数有效。二进制否运算遇到小数时,也会将小数部分舍去,只保留整数部分。所以,对一个小数连续进行两次二进制否运算,能达到取整效果。
~~2.9 // 2
~~47.11 // 47
~~1.9999 // 1
~~3 // 3
2
3
4
使用二进制否运算取整,是所有取整方法中最快的一种。
对字符串进行二进制否运算,JavaScript 引擎会先调用Number
函数,将字符串转为数值。
// 相当于~Number('011')
~'011' // -12
// 相当于~Number('42 cats')
~'42 cats' // -1
// 相当于~Number('0xcafebabe')
~'0xcafebabe' // 889275713
// 相当于~Number('deadbeef')
~'deadbeef' // -1
2
3
4
5
6
7
8
9
10
11
Number
函数将字符串转为数值的规则,参见《数据的类型转换》一章。
对于其他类型的值,二进制否运算也是先用Number
转为数值,然后再进行处理。
// 相当于 ~Number([])
~[] // -1
// 相当于 ~Number(NaN)
~NaN // -1
// 相当于 ~Number(null)
~null // -1
2
3
4
5
6
7
8
# 五、异或运算符
异或运算(^
)在两个二进制位不同时返回1
,相同时返回0
。
0 ^ 3 // 3
上面表达式中,0
(二进制00
)与3
(二进制11
)进行异或运算,它们每一个二进制位都不同,所以得到11
(即3
)。
“异或运算”有一个特殊运用,连续对两个数a
和b
进行三次异或运算,a^=b; b^=a; a^=b;
,可以互换 (opens new window)它们的值。这意味着,使用“异或运算”可以在不引入临时变量的前提下,互换两个变量的值。
var a = 10;
var b = 99;
a ^= b, b ^= a, a ^= b;
a // 99
b // 10
2
3
4
5
6
7
这是互换两个变量的值的最快方法。
异或运算也可以用来取整。
12.9 ^ 0 // 12
# 六、左移运算符
左移运算符(<<
)表示将一个数的二进制值向左移动指定的位数,尾部补0
,即乘以2
的指定次方。向左移动的时候,最高位的符号位是一起移动的。
// 4 的二进制形式为100,
// 左移一位为1000(即十进制的8)
// 相当于乘以2的1次方
4 << 1
// 8
-4 << 1
// -8
2
3
4
5
6
7
8
上面代码中,-4
左移一位得到-8
,是因为-4
的二进制形式是11111111111111111111111111111100
,左移一位后得到11111111111111111111111111111000
,该数转为十进制(减去1后取反,再加上负号)即为-8
。
如果左移0位,就相当于将该数值转为32位整数,等同于取整,对于正数和负数都有效。
13.5 << 0
// 13
-13.5 << 0
// -13
2
3
4
5
左移运算符用于二进制数值非常方便。
var color = {r: 186, g: 218, b: 85};
// RGB to HEX
// (1 << 24)的作用为保证结果是6位数
var rgb2hex = function(r, g, b) {
return '#' + ((1 << 24) + (r << 16) + (g << 8) + b)
.toString(16) // 先转成十六进制,然后返回字符串
.substr(1); // 去除字符串的最高位,返回后面六个字符串
}
rgb2hex(color.r, color.g, color.b)
// "#bada55"
2
3
4
5
6
7
8
9
10
11
12
上面代码使用左移运算符,将颜色的 RGB 值转为 HEX 值。
# 七、右移运算符
右移运算符(>>
)表示将一个数的二进制值向右移动指定的位数。如果是正数,头部全部补0
;如果是负数,头部全部补1
。右移运算符基本上相当于除以2
的指定次方(最高位即符号位参与移动)。
4 >> 1
// 2
/*
// 因为4的二进制形式为 00000000000000000000000000000100,
// 右移一位得到 00000000000000000000000000000010,
// 即为十进制的2
*/
-4 >> 1
// -2
/*
// 因为-4的二进制形式为 11111111111111111111111111111100,
// 右移一位,头部补1,得到 11111111111111111111111111111110,
// 即为十进制的-2
*/
2
3
4
5
6
7
8
9
10
11
12
13
14
15
右移运算可以模拟 2 的整除运算。
5 >> 1
// 2
// 相当于 5 / 2 = 2
21 >> 2
// 5
// 相当于 21 / 4 = 5
21 >> 3
// 2
// 相当于 21 / 8 = 2
21 >> 4
// 1
// 相当于 21 / 16 = 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# 八、头部补零的右移运算符
头部补零的右移运算符(>>>
)与右移运算符(>>
)只有一个差别,就是一个数的二进制形式向右移动时,头部一律补零,而不考虑符号位。所以,该运算总是得到正值。对于正数,该运算的结果与右移运算符(>>
)完全一致,区别主要在于负数。
4 >>> 1
// 2
-4 >>> 1
// 2147483646
/*
// 因为-4的二进制形式为11111111111111111111111111111100,
// 带符号位的右移一位,得到01111111111111111111111111111110,
// 即为十进制的2147483646。
*/
2
3
4
5
6
7
8
9
10
这个运算实际上将一个值转为32位无符号整数。
查看一个负整数在计算机内部的储存形式,最快的方法就是使用这个运算符。
-1 >>> 0 // 4294967295
上面代码表示,-1
作为32位整数时,内部的储存形式使用无符号整数格式解读,值为 4294967295(即(2^32)-1
,等于11111111111111111111111111111111
)。
# 九、开关作用
位运算符可以用作设置对象属性的开关。
假定某个对象有四个开关,每个开关都是一个变量。那么,可以设置一个四位的二进制数,它的每个位对应一个开关。
var FLAG_A = 1; // 0001
var FLAG_B = 2; // 0010
var FLAG_C = 4; // 0100
var FLAG_D = 8; // 1000
2
3
4
上面代码设置 A、B、C、D 四个开关,每个开关分别占有一个二进制位。
然后,就可以用二进制与运算,检查当前设置是否打开了指定开关。
var flags = 5; // 二进制的0101
if (flags & FLAG_C) {
// ...
}
// 0101 & 0100 => 0100 => true
2
3
4
5
6
上面代码检验是否打开了开关C
。如果打开,会返回true
,否则返回false
。
现在假设需要打开A
、B
、D
三个开关,我们可以构造一个掩码变量。
var mask = FLAG_A | FLAG_B | FLAG_D;
// 0001 | 0010 | 1000 => 1011
2
上面代码对A
、B
、D
三个变量进行二进制或运算,得到掩码值为二进制的1011
。
有了掩码,二进制或运算可以确保打开指定的开关。
flags = flags | mask;
上面代码中,计算后得到的flags
变量,代表三个开关的二进制位都打开了。
二进制与运算可以将当前设置中凡是与开关设置不一样的项,全部关闭。
flags = flags & mask;
异或运算可以切换(toggle)当前设置,即第一次执行可以得到当前设置的相反值,再执行一次又得到原来的值。
flags = flags ^ mask;
二进制否运算可以翻转当前设置,即原设置为0
,运算后变为1
;原设置为1
,运算后变为0
。
flags = ~flags;
# 参考链接
- Michal Budzynski, JavaScript: The less known parts. Bitwise Operators (opens new window)
- Axel Rauschmayer, Basic JavaScript for the impatient programmer (opens new window)
- Mozilla Developer Network, Bitwise Operators (opens new window)